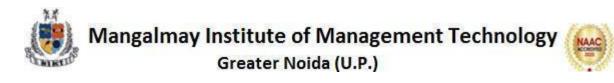


ADD ON CERTIFICATION PROGRAM

on Artificial Intelligence

BBA 3rd Year students


Date: 1st April, 2024 to 29th April, 2024 Time: 2:00 PM - 4:00 PM | Venue: Computer Lab, B Block

Coordinator: Ms. Dolmita Shukla

Resource Person Mr. Himanshu Verma

Toll-Free : 1800 103 3797 | www.mangalmay.net.in Plot No. 8 & 9, Knowledge Park-II, Greater Noida, Delhi-NCR, India

Date: 27th March, 2023

NOTICE

MIMT is organizing an Add-on certification course on "Artificial Intelligence" starting from 1st April, 2024 in Computer Lab, Block B, MIMT. This is to inform that all BBA 3rd Year students of the Management Department can enroll for the same.

The details of the certification is given below:

Program Details : -

Date:	1st April, 2024 to 29th April, 2024
Time:	2:00 PM - 4:00 PM
Venue:	Computer Lab, B Block, MIMT
Participants:	Students of BBA 3rd Year
Resource Person:	Mr. Himanshu Verma (HimanshuGyan LLP)
Coordinator:	Ms. Dolmita Shukla
Registration:	Interested students can give their names to the coordinator latest by 29/03/24

CC to: Principal, MIMT IQAC, MIMT HODs/Coordinators Faculty Members Student Notice Board Office File

Т

Г

Mangalmay Institute of Management Technology Greater Noida (U.P.)

Syllabus

(32 Hours)

Т

Module	Hours	Course Contents
	(Session)	
Module 1	6 Hours (S1-S3)	 Foundations of Artificial Intelligence Fundamentals of Artificial Intelligence Introduction to AI Key concepts and definitions History and Evolution of AI Timeline and milestones Major breakthroughs and contributors Impact of AI in Various Sectors AI applications in healthcare, finance, education, and more
Module 2	6 Hours	Machine Learning Essentials
	(S4-S6)	 Core Concepts of Machine Learning Introduction to machine learning Types of machine learning: supervised, unsupervised, and reinforcement learning Principles of Supervised Learning Definition and key algorithms Examples and applications Techniques in Unsupervised Learning Clustering, association, and dimensionality reduction techniques Real-world use cases

Greater Noida (U.P.)

Module 3	6 Hours (S7-S9)	 Deep Learning and Neural Networks Basics of Neural Networks Structure and functioning of neural networks Introduction to perceptrons and multilayer networks Key Concepts in Deep Learning Deep learning architectures Convolutional Neural Networks (CNNs) Introduction to Recurrent Neural Networks RNN architecture and use cases Long Short-Term Memory (LSTM) networks
Module 4	6 Hours (S10-S12)	Advanced AI Techniques 1. Fundamentals of Generative Adversarial Networks GAN architecture and training process Applications and examples 2. Basics of Reinforcement Learning Key concepts and algorithms Exploration vs. exploitation Foundations of Prompt Engineering Introduction to prompt engineering Crafting effective prompts
Module 5	8 Hours (S13-S16)	 Practical Applications and Emerging Trends Crafting Effective Prompts Techniques and best practices Examples and case studies Advanced Techniques in Prompt Engineering Fine-tuning and optimizing prompts Implementing in various AI models Overview of AI Frameworks and Tools Popular frameworks (TensorFlow, PyTorch, etc.) Toolkits for development and deployment Emerging Trends in AI Latest advancements and future directions Ethical considerations and societal impact

Greater Noida (U.P.)

<u>Schedule</u>

Session	Content	Time	Date
S 1	 Fundamentals of Artificial Intelligence Introduction to AI Key concepts and definitions 	02:00 PM to 04:00 PM	1st April, 2024
S 2	 History and Evolution of AI Timeline and milestones Major breakthroughs and contributors 	02:00 PM to 04:00 PM	2nd April, 2024
S 3	 History and Evolution of AI (2 hours) Timeline and milestones Major breakthroughs and contributors 	02:00 PM to 04:00 PM	4th April, 2024
S 4	 Core Concepts of Machine Learning Introduction to machine learning Types of machine learning: supervised, unsupervised, and reinforcement learning 	02:00 PM to 04:00 PM	5th April, 2024
S 5	 Principles of Supervised Learning Definition and key algorithms Examples and applications 	02:00 PM to 04:00 PM	8th April, 2024
S 6	 Techniques in Unsupervised Learning Clustering techniques Association techniques Dimensionality reduction techniques Real-world use cases 	02:00 PM to 04:00 PM	9th April, 2024
S 7	 Basics of Neural Networks Structure and functioning of neural networks 	02:00 PM to 04:00 PM	11th April, 2024

Greater Noida (U.P.)

	• Introduction to perceptrons and multilayer networks		
S 8	 Key Concepts in Deep Learning Deep learning architectures Convolutional Neural Networks (CNNs) 	02:00 PM to 04:00 PM	12th April, 2024
S 9	 Introduction to Recurrent Neural Networks RNN architecture and use cases Long Short-Term Memory (LSTM) networks 	02:00 PM to 04:00 PM	16th April, 2024
S 10	 Fundamentals of Generative Adversarial Networks GAN architecture and training process Applications and examples 	02:00 PM to 04:00 PM	17th April, 2024
S 11	 Basics of Reinforcement Learning Key concepts and algorithms Exploration vs. exploitation 	02:00 PM to 04:00 PM	19th April, 2024
S 12	 Foundations of Prompt Engineering Introduction to prompt engineering Crafting effective prompts 	02:00 PM to 04:00 PM	22nd April, 2024
S 13	 Crafting Effective Prompts Techniques and best practices Examples and case studies 	02:00 PM to 04:00 PM	23rd April, 2024
S 14	 Advanced Techniques in Prompt Engineering Fine-tuning and optimizing prompts 	02:00 PM to 04:00 PM	25th April, 2024

Greater Noida (L	J.P.)
------------------	-------

	• Implementing in various AI models		
S 15	 Overview of AI Frameworks and Tools Popular frameworks (TensorFlow, PyTorch, etc.) Toolkits for development and deployment 	02:00 PM to 04:00 PM	26th April, 2024
S 16	 Emerging Trends in AI Latest advancements and future directions Ethical considerations and societal impact 	02:00 PM to 04:00 PM	29th April, 2024
	Assessment	02:00 PM to 03:00 PM	29th April, 2024

<u>Report</u>			
Name of Certification Program	Artificial Intelligence and Prompt Engineering		
Date	01-04-2024 to 29-04-2024		
Venue	Computer lab (Block B)		
Organised by	Management Department		
Participation by	BBA 3rd Year Students		
No. of Participants	73		
Resource Person	Mr. Himanshu Verma		
Activity Convener	Ms. Dolmita Shukla		
Objective	To equip individuals with comprehensive knowledge and practical skills in understanding and applying AI technologies and prompt engineering techniques. This program aims to empower participants with the expertise necessary to develop and deploy AI models, design effective prompts, and leverage AI tools for various applications. Beyond mere technical understanding, the curriculum		

	is tailored to cultivate a deeper grasp of AI principles, frameworks, and ethical considerations, enabling participants to make informed decisions regarding AI implementation and innovation.	
Content	Day 1: Fundamentals of Artificial Intelligence	
	In this session, Mr. Himanshu Verma introduced the course by explaining the fundamentals of Artificial Intelligence (AI). He began by defining AI and its scope, highlighting the significance of AI in modern technology and various industries. Mr. Verma outlined the key concepts and definitions, ensuring that participants had a solid understanding of AI's foundational principles. He explained the differences between narrow AI, general AI, and superintelligent AI, providing examples to illustrate each type. The session also covered the basic terminology used in AI, such as machine learning, neural networks, and algorithms. Participants engaged in discussions about the potential and limitations of AI, and Mr. Verma emphasized the importance of understanding these concepts to grasp more advanced topics in future sessions. This introductory session set the stage for the rest of the course by establishing a common understanding of AI principles and creating a framework for further exploration.	
	Day 2: History and Evolution of AI	
	During this session, Mr. Verma focused on the history and evolution of AI, providing a comprehensive overview of AI's journey from its inception to the present day. He traced the development of AI, starting from the early days of computing and the conceptualization of artificial intelligence by pioneers like Alan Turing. Mr. Verma highlighted significant milestones, such as the Dartmouth Conference in 1956, which is often considered the birth of AI as a field of study. He discussed the various phases of AI development, including the enthusiasm of the 1960s, the "AI winter" periods of reduced funding and interest, and the resurgence of AI research in recent decades. Participants learned about major breakthroughs, such as the development of expert systems, machine learning algorithms, and neural networks. Mr. Verma also emphasized the contributions of key figures in AI, including John McCarthy, Marvin Minsky, and Geoffrey Hinton. The session provided participants with a historical context that enriched their understanding of AI's current capabilities and future potential.	
	Day 3: History and Evolution of AI	
	Continuing from the previous session, Mr. Verma delved deeper into the historical context of AI. He discussed the significant breakthroughs that have shaped the field, such as the creation of the first AI programs, including the Logic Theorist and the General	

Problem Solver. Mr. Verma explained how these early programs demonstrated the potential of AI to solve complex problems. He also covered the impact of funding and support from government and private sectors on AI research, including the role of DARPA in advancing AI technologies. Participants explored the emergence of machine learning and neural networks, with a focus on key developments like the backpropagation algorithm and the rise of deep learning. Mr. Verma highlighted the achievements of AI in various domains, such as chess-playing programs like Deep Blue and the development of self-driving cars. The session provided a comprehensive understanding of how AI has evolved over time and the factors that have contributed to its growth. Participants appreciated the historical perspective, which helped them grasp the significance of current AI advancements.

Day 4: Core Concepts of Machine Learning

In this session, Mr. Verma focused on the core concepts of machine learning, a subset of AI that has become increasingly important in recent years. He began by explaining what machine learning is and how it differs from traditional programming. Mr. Verma described the various types of machine learning, including supervised learning, unsupervised learning, and reinforcement learning, providing examples of each. He discussed the importance of data in machine learning, emphasizing the need for high-quality, labeled data for training models. Participants learned about the basic workflow of a machine learning project, from data collection and preprocessing to model training and evaluation. Mr. Verma introduced key machine learning algorithms, such as linear regression, decision trees, and support vector machines, explaining how they work and their applications. The session included handson exercises where participants experimented with simple machine learning models using popular tools and frameworks. This practical approach helped participants solidify their understanding of machine learning concepts and prepare for more advanced topics in future sessions.

Day 5: Principles of Supervised Learning

Mr. Verma dedicated this session to exploring the principles of supervised learning, one of the most widely used types of machine learning. He began by defining supervised learning and explaining its key characteristics, including the use of labeled data to train models. Mr. Verma discussed various supervised learning algorithms, such as linear regression, logistic regression, and knearest neighbors, providing detailed explanations of how they work and their practical applications. He emphasized the importance of choosing the right algorithm for a given problem and discussed the factors that influence this decision. Participants learned about model evaluation techniques, including cross-validation and performance

metrics like accuracy, precision, recall, and F1 score. Mr. Verma provided examples of supervised learning applications in different domains, such as spam detection, image classification, and medical diagnosis. The session included hands-on exercises where participants implemented supervised learning models using popular machine learning libraries. This interactive approach helped participants gain practical experience and deepen their understanding of supervised learning principles.

Day 6: Techniques in Unsupervised Learning

In this session, Mr. Verma covered techniques in unsupervised learning, another important type of machine learning. He began by explaining the differences between supervised and unsupervised learning, highlighting the fact that unsupervised learning does not rely on labeled data. Mr. Verma introduced participants to common unsupervised learning techniques, such as clustering, association, and dimensionality reduction. He discussed popular clustering algorithms, including k-means and hierarchical clustering, explaining how they work and their applications. Participants also learned about association rule mining and how it is used in market basket analysis to identify patterns in large datasets. Mr. Verma covered dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), explaining their importance in reducing the complexity of data and visualizing high-dimensional datasets. The session included real-world use cases of unsupervised learning, such as customer segmentation and anomaly detection. Hands-on exercises allowed participants to implement unsupervised learning algorithms and explore their applications, enhancing their practical knowledge and skills.

Day 7: Basics of Neural Networks

Mr. Verma introduced participants to the basics of neural networks, a fundamental component of many AI systems. He began by explaining the structure and functioning of neural networks, describing how they are inspired by the human brain. Mr. Verma covered the basic building blocks of neural networks, including neurons, weights, biases, and activation functions. He explained the concept of a perceptron, the simplest type of neural network, and how it can be combined to form more complex multilayer networks. Participants learned about the importance of activation functions, such as sigmoid, tanh, and ReLU, in introducing non-linearity to neural networks. Mr. Verma discussed the process of training a neural network, including forward propagation, loss calculation, and backpropagation. The session also covered common challenges in training neural networks, such as overfitting and vanishing gradients, and techniques to address them. Hands-on exercises allowed participants to build and train simple neural networks using

popular deep learning frameworks, reinforcing their understanding of neural network fundamentals.

Day 8: Key Concepts in Deep Learning

This session focused on key concepts in deep learning, an advanced subset of machine learning. Mr. Verma began by explaining the difference between deep learning and traditional machine learning, emphasizing the depth of neural networks used in deep learning. He discussed deep learning architectures, such as feedforward neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). Mr. Verma provided a detailed overview of CNNs, explaining their structure and how they are used for image recognition and processing tasks. Participants learned about the various layers in a CNN, including convolutional layers, pooling layers, and fully connected layers, and their roles in feature extraction and classification. Mr. Verma highlighted the advantages of deep learning, such as its ability to automatically learn features from raw data, and its applications in various fields, including computer vision, natural language processing, and speech recognition. Hands-on exercises allowed participants to implement and train CNNs using deep learning frameworks, providing practical experience in working with deep learning models.

Day 9: Introduction to Recurrent Neural Networks

Mr. Verma introduced participants to recurrent neural networks (RNNs), a type of neural network designed to handle sequential data. He explained the architecture of RNNs, highlighting their ability to maintain information across time steps through recurrent connections. Mr. Verma discussed the applications of RNNs in tasks such as time series prediction, natural language processing, and speech recognition. Participants learned about the challenges associated with training RNNs, including the vanishing and exploding gradient problems, and techniques to address them, such as gradient clipping and the use of LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) networks. Mr. Verma provided detailed explanations of LSTM networks, describing their structure and how they overcome the limitations of traditional RNNs. The session included examples of real-world applications of RNNs, such as language translation and sentiment analysis. Handson exercises allowed participants to implement and train RNNs and LSTM networks, reinforcing their understanding of sequential data processing.

Day 10: Fundamentals of Generative Adversarial Networks

In this session, Mr. Verma explained the fundamentals of generative adversarial networks (GANs), a type of neural network used for generating realistic data. He introduced the GAN architecture,

consisting of a generator and a discriminator, and explained how these two components are trained in a competitive setting. Mr. Verma discussed the training process of GANs, including the adversarial loss function and the challenges associated with training GANs, such as mode collapse and convergence issues. Participants learned about the applications of GANs in various fields, including image synthesis, data augmentation, and video generation. Mr. Verma provided examples of successful GAN applications, such as generating realistic images of faces and creating high-resolution images from low-resolution inputs. The session included hands-on exercises where participants implemented and trained simple GAN models using popular deep learning frameworks. This practical approach helped participants understand the intricacies of GANs and their potential in generating synthetic data.

Day 11: Basics of Reinforcement Learning

Mr. Verma introduced participants to the basics of reinforcement learning, a type of machine learning where an agent learns to make decisions by interacting with an environment. He explained the key concepts of reinforcement learning, including states, actions, rewards, and policies. Mr. Verma discussed the exploration vs. exploitation dilemma, highlighting the importance of balancing exploration of new actions and exploitation of known actions to maximize rewards. Participants learned about key reinforcement learning algorithms, such as Q-learning and deep Q-networks (DQNs), and their applications in various domains. Mr. Verma provided examples of reinforcement learning applications, such as game playing, robotics, and autonomous driving. The session included hands-on exercises where participants implemented simple reinforcement learning algorithms and trained agents to perform specific tasks. This practical experience helped participants understand the challenges and opportunities in reinforcement learning.

Day 12: Foundations of Prompt Engineering

This session focused on the foundations of prompt engineering, an essential technique for optimizing the performance of AI models. Mr. Verma introduced the concept of prompt engineering and explained its significance in guiding AI models to produce desired outputs. He discussed the principles of crafting effective prompts, including clarity, specificity, and relevance. Participants learned about different types of prompts, such as zero-shot, one-shot, and few-shot prompts, and their applications in various AI tasks. Mr. Verma provided examples of successful prompt engineering in natural language processing, image generation, and other AI domains. The session included hands-on exercises where participants crafted and tested prompts for different AI models, helping them understand the impact of prompt engineering on model

performance. This practical approach enabled participants to gain valuable skills in optimizing AI outputs through effective prompt design.

Day 13: Crafting Effective Prompts

Mr. Verma shared techniques and best practices for crafting effective prompts, building on the foundations covered in the previous session. He discussed the importance of understanding the model's capabilities and limitations when designing prompts. Participants learned about the role of context and specificity in creating prompts that guide AI models to produce accurate and relevant outputs. Mr. Verma provided case studies and examples of successful prompt engineering in various AI applications, illustrating the principles discussed. The session included hands-on exercises where participants experimented with different prompt designs and evaluated their impact on model performance. This interactive approach allowed participants to apply the techniques learned and refine their skills in crafting effective prompts.

Day 14: Advanced Techniques in Prompt Engineering

In this session, Mr. Verma covered advanced techniques in prompt engineering, focusing on fine-tuning and optimizing prompts for different AI models. He discussed methods for evaluating and improving prompt effectiveness, including iterative testing and refinement. Participants learned about the importance of feedback loops and continuous improvement in prompt engineering. Mr. Verma provided examples of advanced prompt engineering techniques in various AI applications, such as natural language generation, image synthesis, and recommendation systems. The included hands-on exercises where participants session implemented advanced prompt engineering techniques and optimized prompts for specific tasks. This practical experience helped participants gain a deeper understanding of the complexities and nuances of advanced prompt engineering.

Day 15: Overview of AI Frameworks and Tools

Mr. Verma provided an overview of popular AI frameworks and tools used for developing and deploying AI models. He discussed the features and benefits of frameworks like TensorFlow, PyTorch, and Keras, highlighting their strengths and use cases. Participants learned about the various tools and libraries available for data preprocessing, model training, and evaluation. Mr. Verma explained the importance of selecting the right framework and tools for specific AI projects, considering factors such as ease of use, scalability, and community support. The session included demonstrations of key features and functionalities of popular AI frameworks, helping participants understand how to leverage these

	tools in their own projects. Hands-on exercises allowed participants to experiment with different frameworks and tools, gaining practical experience in using them for AI development.	
	Day 16: Emerging Trends in AI	
	The final session focused on emerging trends in AI, with Mr. Verma discussing the latest advancements and future directions in the field. He highlighted key trends, such as the rise of explainable AI, advancements in natural language processing, and the increasing importance of ethical considerations in AI development. Participants explored the potential impact of these trends on various industries and society as a whole. Mr. Verma emphasized the importance of staying informed about emerging trends and continuously updating skills to remain competitive in the rapidly evolving field of AI. The session concluded with a discussion on the ethical implications of AI, including issues related to bias, fairness, and accountability. Participants appreciated the forward-looking perspective and the emphasis on responsible AI development, which rounded off the course with a comprehensive understanding of the current state and future potential of AI.	
Assessment	At the end of the Tax Planning and Return filing course, there was a MCQ assessment assigned to assess the understanding level of the students.	
Outcome of Activity	Students demonstrated a mastery of AI technologies and prompt engineering techniques. They not only acquired practical skills in developing and deploying AI models but also cultivated a deep understanding of the ethical implications and societal impacts of AI. Equipped with this knowledge, students emerged as confident professionals capable of applying AI solutions responsibly and effectively across various domains. Additionally, they developed a heightened awareness of prompt design principles, enabling them to create effective prompts for enhancing language models and natural language processing tasks. Overall, students gained the expertise and confidence to contribute meaningfully to the advancement of AI technology while navigating ethical considerations and societal challenges.	

List of Beneficiaries

S. No.	Roll Number	Student Name	Registered
1	210992105004	ABHINAV JINDAL	Registered
2	210992105006	ABHISHEK KUMAR	Registered
3	210992105012	ADITYA	Registered
4	210992105013	ADITYA KUMAR	Registered
5	210992105019	AKASH KUMAR	Registered

6	210992105024	ALAMGIR HASSAN	Registered
7	210992105025	ALISHA KUMARI	Registered
8	210992105026	ALOK RAJ	Registered
9	210992105033	AMRIT RANJAN	Registered
10	210992105037	ANIRUDH PRATAP SINGH	Registered
11	210992105039	ANKIT KUMAR	Registered
12	210992105044	ANSH KUMAR	Registered
13	210992105046	ANSHIKA BHATIA	Registered
14	210992105047	ANSHIKA JHA	Registered
15	210992105051	ANWAR ALI	Registered
16	210992105054	ARSHAD ALI	Registered
17	210992105057	ARVIND VERMA	Registered
18	210992105059	ARYAN SHARMA	Registered
19	210992105063	ASHUTOSH MISHRA	Registered
20	210992105064	ATUL KUMAR THAKUR	Registered
21	210992105067	AYUSH JAIN	Registered
22	210992105074	BISHWAJIT DUBEY	Registered
23	210992105080	DEEPESH KUMAR	Registered
24	210992105083	DHIRAJ TRIPATHI	Registered
25	210992105089	FAIZAN MANOWER	Registered
26	210992105092	GAURAV PAL	Registered
27	210992105098	HIMANSHU KUMAR SINGH	Registered
28	210992105099	HAMDAAN ALI KHAN	Registered
29	210992105103	JANBI KUMARI	Registered
30	210992105104	JATIN KUMAR	Registered
31	210992105108	JYOTI SHARMA	Registered
32	210992105114	KAVITA MANDAL	Registered
33	210992105117	KETAN	Registered
34	210992105120	KHUSHI KUMARI	Registered
35	210992105128	MANVI SHUKLA	Registered
36	210992105130	MAYANK BAISOYA	Registered
37	210992105134	MD TANJEEM AKHTAR	Registered
38	210992105135	MILLEE GUPTA	Registered
39	210992105137	MITESH SHEKHAR	Registered
40	210992105141	MOHD ARIF	Registered
41	210992105142	MOHD TARIQ	Registered
42	210992105147	NIDHI TONGER	Registered
43	210992105148	NIKESH KUMAR	Registered
44	210992105150	NIKHIL JAISWAL	Registered
45	210992105152	NISHANT ANAND	Registered
46	210992105159	POOJA KUMARI	Registered

Greater Noida (U.P.)

47	210992105160	PRAFUL PRATAP SINGH	Registered
48	210992105161	PRASHANT	Registered
49	210992105163	PRAVEEN KUMAR	Registered
50	210992105164	PRINCE PATEL	Registered
51	210992105173	PUSHPLATA	Registered
52	210992105179	RANDHIR KUMAR	Registered
53	210992105184	RITISHA SRIVASTAV	Registered
54	210992105192	SACHIN SINGH PAL	Registered
55	210992105194	SAKSHAM SINGH RAWAT	Registered
56	210992105197	SALONI JHA	Registered
57	210992105199	SANDEEP KUMAR	Registered
58	210992105205	SATYANAND SONI	Registered
59	210992105209	SAURAV KUMAR	Registered
60	210992105210	SHALISH KUMAR JHA	Registered
61	210992105215	SHIVAM CHAUHAN	Registered
62	210992105218	SHIVANSHI TIWARI	Registered
63	210992105220	SHORYA BHATI	Registered
64	210992105226	SOURABH CHAUDHARY	Registered
65	210992105229	SUMIT KUMAR	Registered
66	210992105231	SUMIT SHARMA	Registered
67	210992105233	TAMANNA SHARMA	Registered
68	210992105235	TANNU SOLANKI	Registered
69	210992105244	UJJWAL BHATI	Registered
70	210992105247	VANSHIKA TIWARI	Registered
71	210992105255	VISHAL BHATI	Registered
72	210992105257	VISHAL PANDEY	Registered
73	210992105266	YUVRAJ SINGH	Registered

Status of Students for Add on certificate program of Artificial Intelligence and Prompt Engineering

S. No.	Roll Number	Student Name	Registered	Status
1	210992105004	ABHINAV JINDAL	Registered	Completed
2	210992105006	ABHISHEK KUMAR	Registered	Completed
3	210992105012	ADITYA	Registered	Completed
4	210992105013	ADITYA KUMAR	Registered	Completed
5	210992105019	AKASH KUMAR	Registered	Completed
6	210992105024	ALAMGIR HASSAN	Registered	Completed
7	210992105025	ALISHA KUMARI	Registered	Completed
8	210992105026	ALOK RAJ	Registered	Completed
9	210992105033	AMRIT RANJAN	Registered	Completed

Greater Noida (U.P.)

10	210992105037	ANIRUDH PRATAP SINGH	Registered	Completed
11	210992105039	ANKIT KUMAR	Registered	Completed
12	210992105044	ANSH KUMAR	Registered	Completed
13	210992105046	ANSHIKA BHATIA	Registered	Completed
14	210992105047	ANSHIKA JHA	Registered	Completed
15	210992105051	ANWAR ALI	Registered	Completed
16	210992105054	ARSHAD ALI	Registered	Completed
17	210992105057	ARVIND VERMA	Registered	Completed
18	210992105059	ARYAN SHARMA	Registered	Completed
19	210992105063	ASHUTOSH MISHRA	Registered	Completed
20	210992105064	ATUL KUMAR THAKUR	Registered	Completed
21	210992105067	AYUSH JAIN	Registered	Completed
22	210992105074	BISHWAJIT DUBEY	Registered	Completed
23	210992105080	DEEPESH KUMAR	Registered	Completed
24	210992105083	DHIRAJ TRIPATHI	Registered	Completed
25	210992105089	FAIZAN MANOWER	Registered	Completed
26	210992105092	GAURAV PAL	Registered	Completed
27	210992105098	HIMANSHU KUMAR SINGH	Registered	Completed
28	210992105099	HAMDAAN ALI KHAN	Registered	Completed
29	210992105103	JANBI KUMARI	Registered	Completed
30	210992105104	JATIN KUMAR	Registered	Completed
31	210992105108	JYOTI SHARMA	Registered	Completed
32	210992105114	KAVITA MANDAL	Registered	Completed
33	210992105117	KETAN	Registered	Completed
34	210992105120	KHUSHI KUMARI	Registered	Completed
35	210992105128	MANVI SHUKLA	Registered	Completed
36	210992105130	MAYANK BAISOYA	Registered	Completed
37	210992105134	MD TANJEEM AKHTAR	Registered	Completed
38	210992105135	MILLEE GUPTA	Registered	Completed
39	210992105137	MITESH SHEKHAR	Registered	Completed
40	210992105141		Registered	Completed
41		MOHD TARIQ	Registered	Completed
42		NIDHI TONGER	Registered	Completed
43		NIKESH KUMAR	Registered	Completed
44		NIKHIL JAISWAL	Registered	Completed
45		NISHANT ANAND	Registered	Completed
46		POOJA KUMARI	Registered	Completed
47		PRAFUL PRATAP SINGH	Registered	Completed
48		PRASHANT	Registered	Completed
49		PRAVEEN KUMAR	Registered	Completed
50	210992105164	PRINCE PATEL	Registered	Completed

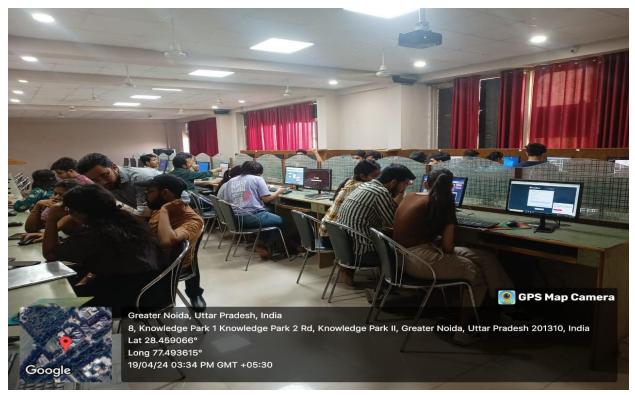
Greater Noida (U.P.)

51	210992105173	PUSHPLATA	Registered	Completed
52	210992105179	RANDHIR KUMAR	Registered	Completed
53	210992105184	RITISHA SRIVASTAV	Registered	Completed
54	210992105192	SACHIN SINGH PAL	Registered	Completed
55	210992105194	SAKSHAM SINGH RAWAT	Registered	Completed
56	210992105197	SALONI JHA	Registered	Completed
57	210992105199	SANDEEP KUMAR	Registered	Completed
58	210992105205	SATYANAND SONI	Registered	Completed
59	210992105209	SAURAV KUMAR	Registered	Completed
60	210992105210	SHALISH KUMAR JHA	Registered	Completed
61	210992105215	SHIVAM CHAUHAN	Registered	Completed
62	210992105218	SHIVANSHI TIWARI	Registered	Completed
63	210992105220	SHORYA BHATI	Registered	Completed
64	210992105226	SOURABH CHAUDHARY	Registered	Completed
65	210992105229	SUMIT KUMAR	Registered	Completed
66	210992105231	SUMIT SHARMA	Registered	Completed
67	210992105233	TAMANNA SHARMA	Registered	Completed
68	210992105235	TANNU SOLANKI	Registered	Completed
69	210992105244	UJJWAL BHATI	Registered	Completed
70	210992105247	VANSHIKA TIWARI	Registered	Completed
71	210992105255	VISHAL BHATI	Registered	Completed
72	210992105257	VISHAL PANDEY	Registered	Completed
73	210992105266	YUVRAJ SINGH	Registered	Completed

PROFILE OF THE RESOURCE PERSON

Mr. Himanshu Verma

Himanshu Verma is the founder & CEO of HimanshuGyan LLP and a seasoned financial expert with over 8 years of experience in navigating the complexities of the market. With a passion for illuminating the path to investing, he generously shares his expertise through YouTube, guiding others away from misconceptions and towards financial empowerment. Through certification programs and investments in startups, Himanshu orchestrates a harmonious future in the world of finance.



Glimpses of Certification Program:

Commencement of the session "key concepts in deep learning"

Students learning about the Fundamentals of Generative Adversarial Networks

Sample Certificate

Sample Assessment

	Mangalmay Institute of Management Technology
	Greater Nolda (U.P.)
	12.8/
	Course: BBA Time: 1 hour
	ADD-ON COURSE QUIZ
	Course Name: Artificial Intelligence and Prompt Engineering
	Quiz
	Name - Abhimu Jindal Roll no - 210 192105 004 Invigilator Sign - Bor Batch - 2021 - 2024 Date - 29/04/24 Semester - II
	Rande
	it's mark and there is
	General Instructions: All questions are compulsory. Each question will carry '1' mark and there is
	no 'Negative Marking'
	Q1. What is the primary purpose of AI?
	A. To replace all human jobs
8	B. To mimic human intelligence
	C. To create new types of computers D. To manage large datasets
	D. 10 manage large datasets
	Q2. Which of the following is a type of machine learning?
	A. Supervised learning
	B. Quantum learning
	C. Genetic learning
	D. Dynamic learning
	an this start notwork composed of?
	Q3. What is a neural network composed of?
	B. Circuits and switches
	C. Cells and neurons
	D. Blocks and connections
	Q4. Deep learning is a subset of which broader field?
	A. Data Science
	B. Machine Learning
	C. Computer Science
	D. Statistics
	to valaged TensorFlow?
	Q5. Which company developed TensorFlow?
	A. Microsoft
	B. IBM
	C. Google
	D. Amazon
	Q6. In which year was the term "Artificial Intelligence" coined?
	Q6. In which year week

Greater Noida (U.P.)

A. 1943 B. 1956 C. 1970 D. 1985 Q7. What is the role of ethical compliance in Al? A. To reduce the cost of AI implementation B: To ensure AI systems are fair and unbiased C. To increase the speed of AI development D. To eliminate the need for human oversight Q8. Which of the following is an AI framework? A. Hadoop B. TensorFlow C. Spark D. Oracle Q9. What is supervised learning? A. Learning without any labeled data Br Learning with labeled data C. Learning by trial and error D. Learning by imitating others Q10. Which algorithm is commonly used in supervised learning? A. K-means B. Linear regression C. Apriori D. Autoencoder Q11. What is clustering in unsupervised learning? A. Grouping similar data points together B. Predicting the next data point C. Reducing data dimensions D. Enhancing image quality Q12. Which technique is used for dimensionality reduction? A. K-means B. PCA C. Random forest D. SVM Q13. What is an activation function in a neural network? A. A function that activates the network B. A function that helps the network learn non-linear patterns

	And the second
C. A function that initializes network weights	
D. A function that terminates training	
Q14. Which of the following is a type of neural network?	
A. SQL	
B. CNN	
C. HTML	
D. CSS	
Q15.What is a common application of CNNs?	
A. Text analysis	
B. Image recognition	
C. Data encryption	
D. Sound synthesis	
Off What days DNN stand (2	
Q16. What does RNN stand for? A. Random Neural Network	
B. Recurrent Neural Network	
C. Recursive Neural Network	
D. Rational Neural Network	
Q17. Which network is designed to handle sequential data?	
A. CNN	
B. RNN	
C. GAN	
D. SVM	
Q18. What does GAN stand for?	
A. Generalized Artificial Network	
B. Generated Activation Network	
C. Generative Adversarial Network	
D. Generalized Adaptive Network	
Q19. What is a common use case for GANs?	
A. Generating realistic images	
B. Predicting stock prices	
Classifying emails D. Translating languages	
D. Hansiating languages	
Q20. What is the goal of reinforcement learning?	
A. To classify data	
B. To group data	
C To make a sequence of decisions	
D. To compress data	

Greater Noida (U.P.)

- Q21. What is prompt engineering primarily used for?
- A. Data storage
- B. Optimizing AI models
- C. Enhancing NLP tasks
 - D. Improving hardware performance

Q22. What is a structured prompt?

- A: A prompt with predefined categories
 - B. A prompt generated randomly
 - C. A prompt with no specific format
 - D. A prompt used for numerical data

Q23. Which of the following is an advanced technique in prompt engineering?

- A. Few-shot learning
 - B. Batch processing
 - C. Data mining
 - D. Image segmentation

Q24. What is the benefit of zero-shot learning in prompt engineering?

A. It requires no labeled data

- B. It improves computational speed
- C. It enhances image quality
- D. It reduces data redundancy

Q25. Which concept involves learning from a small number of examples?

- A. Zero-shot learning
- B-Few-shot learning
 - C. Supervised learning D. Unsupervised learning
 - D. Onsupervised learning

Q26. What is a key aspect of effective prompt design?

- A. Complexity B. Clarity
 - C. Ambiguity
 - D. Length
- Q27. Why is prompt tuning important?
- A. To speed up training time
- B. To optimize model responses
- C. To reduce hardware costs
- D. To increase data storage

Q28. Which framework is often used for building and training neural networks?

Greater Noida (U.P.)

- A. TensorFlow
- B. MySQL
- C. Apache
- D. React

Q29. What does PCA stand for in machine learning?

- A. Primary Component Analysis
- UB. Principal Cluster Analysis
- C. Principal Component Analysis D. Primary Cluster Analysis

Q30. Which AI trend involves creating more human-like AI interactions?

A. Data mining

- B. Deep learning
- C. Natural Language Processing (NLP)
- D. Computer vision